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Stilbene glycoside protects osteoblasts against 
oxidative damage via Nrf2/HO-1 and NF-κB signaling 
pathways

Jian Cheng1, Haohao Wang2, Zhida Zhang1, Keyong Liang1

A b s t r a c t

Introduction: Oxidative stress is currently proposed as a risk factor associ-
ated with the development and progression of osteoporosis. Here, the ef-
fect of 2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glycoside (THSG) on oxidative 
damage was investigated in an osteoblast-like MC3T3-E1 cell model.
Material and methods: In this study, MC3T3-E1 cells were treated with hy-
drogen peroxide (H2O2) (100 μM) and THSG (20, 50 and 100 μM), and alka-
line phosphatase (ALP). ROS and MDA levels were measured using specific 
kits. Meanwhile, cell viability and apoptosis were also assessed using MTT 
methods and flow cytometry, respectively. Then, expression levels of Nrf2 
and its downstream targets were determined using real-time PCR and west-
ern blotting, as well as the apoptosis related factors, including Bax, Bcl-2, 
caspase-3, and caspase-9.
Results: Upon H2O2 treatment, cell viability was significantly decreased, 
while THSG clearly attenuated this decrease in a dose-dependent manner. 
Compared with the negative control, H2O2 significantly decreased ALP and 
increased the levels of MDA, ROS and apoptosis, while THSG markedly re-
versed these effects in a dose-dependent manner. Moreover, THSG was iden-
tified to reverse the elevation of caspase-3, caspase-9 and Bax and the re-
duction of Bcl-2 induced by H2O2. For the Nrf2 signaling pathway, THSG was 
also observed to attenuate the up-regulation of Nrf2, HO-1, and NQO1, and 
the down-regulation of NF-κB induced by H2O2.
Conclusions: THSG could significantly attenuate oxidative damage induced 
by H2O2 via the Nrf2/NF-κB signaling pathway, providing new insights for 
treatments of osteoporosis induced by oxidative injury.
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Introduction

Oxidative stress has been proposed as an important parameter asso-
ciated with the pathogenesis of osteoporosis, and the underlying mech-
anism of oxidative stress induced regulation of the Nrf2/HO-1 and NF-
κB signaling pathway in osteoporosis also has been studied extensively  
[1, 2]. Increasing evidence reveals that reactive oxygen species (ROS) ac-
cumulation leads to oxidative stress under conditions of aging, illnesses, 
or medicine use, and subsequently suppresses the induction of Nrf/HO-1 
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and NF-κB signaling pathway activation, contrib-
uting to the genesis and progression of osteo-
porosis [3–5]. Therefore, antioxidants have been 
adopted as a  promising therapeutic strategy for 
osteoporosis treatment.

Radix polygoni multiflori is the dried root of 
the polygonum plant Polygonum multiflorum 
Thunb. Recent studies have demonstrated that 
Radix polygoni multiflori exhibits antihyperlipid-
emic and antiatherosclerotic effects in prelimi-
nary research [6, 7]. The beneficial properties of 
2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glycoside 
(stilbene glycoside – THSG), which is regarded as 
the most important bioactive component of Radix 
polygoni multiflori, have been widely investigat-
ed, including its outstanding antioxidant and free 
radical-scavenging ability. Given these properties, 
recent studies have suggested that THSG could 
exert potential preventive and therapeutic effects 
against some chronic diseases, such as apoplexy, 
senile dementia (Alzheimer’s disease), hyperli-
pemia, and atherosclerosis [8–10].

As a  transcription factor, nuclear factor eryth-
roid 2-related factor 2 (Nrf2) is reported to medi-
ate antioxidant related genes by binding to an-
tioxidant response elements. Meanwhile, it has 
been reported that the activation of Nrf2 plays 
an important role in the feedback of attenuated 
oxidative injury via increasing activity of anti-oxi-
dative related enzymes [11, 12]. In addition, THSG 
also exhibits beneficial effect on free fatty acid, 
superoxide anion, and focal ischemia induced tis-
sue injury by mediating the activation of NF-κB 
and Nrf2 [13, 14]. 

In this study, the effects of THSG on oxida-
tive damage were investigated in osteoblast-like 
MC3T3-E1 cells. Meanwhile, the involvement of 
Nrf2/HO-1 and NF-κB signaling pathways was 
also explored, with the aim of clarifying the poten-
tial mechanisms of THSG-mediated antioxidative 
protective ability in an MC3T3-E1 cell model.

Material and methods

Cell culture

The MC3T3-E1 cell line, similar to osteoblasts, 
was purchased from the American Type Culture 
Collection (ATCC). As it recommended, MC3TC-E1 
was maintained in α-minimum essential medium 
(α-MAM) supplied with 10% fetal bovine serum, 
100 U/ml penicillin, and 100 μg/ml streptomycin 
at 37°C with 5% humidity CO2.

Cell viability assay

Methylthiazol tetrazolium (MTT) assay was ap-
plied in this study to measure cell viability. In total 
1 × 105/well MC3T3-E1 cells were cultured in 96-
well plates, and treated with different concentra-

tions of THSG (0, 5, 10, 20, 50, 80, and 100 μM) 
for 6, 12, 24, and 48 h, respectively. THSG (origi-
nating from the root of the polygonum plant Po-
lygonum multiflorum Thunb, molecular weight 406 
and purity above 98.52%, No. 110844-200606) 
was purchased from the National Institute for the 
Control of Pharmaceutical and Biological Products 
(Beijing, China). Then, cells were incubated with  
0.5 mg/ml MTT at 37°C for 4 h after washing twice 
with PBS. Next, 200 μl of dimethyl sulfoxide was 
added to dissolve the produced formazan salts. 
An ELISA reader was used to measure the opti-
cal density at the wavelength of 490 nm, and the 
mean value of repeats was calculated. 

Alkaline phosphatase (ALP) activity

MC3T3-E1 cells were seeded in a 12-well plate, 
and then cultured with α-MEM (Basal), H

2O2  
(100 μM), H

2O2 (100 μM) + THSG (20 μM), H2O2 
(100 μM) + THSG (50 μM), and H

2O2 (100 μM) + 
THSG (100 μM) at 37°C for 4 h. After treatment, 
fresh medium was used to cultivate these cells for 
5 days. Subsequently, cell samples were lysed us-
ing lysis buffer centrifuged at 12,000×g for 10 min. 
Then, supernatant was collected, and ALP activi-
ty and protein concentration in the supernatant 
were determined using the ALP activity assay kit 
(Cell Biolabs, San Diego, CA, USA) and BCA-protein 
assay kit (Biyuntian, Nanjing, China), respectively.

Apoptosis

MC3T3-E1 cells were cultured in a 6-well plate, 
and treated with α-MEM (Basal), H

2O2 (100 μM), 
H

2O2 (100 μM) + THSG (20 μM), H2O2 (100 μM) 
+ THSG (50 μM), and H

2O2 (100 μM) + THSG 
(100 μM) for 4 h respectively. Annexin V/PI dou-
ble staining was performed to measure apopto-
sis according to the manufacturer’s instructions. 
A FACScan flow cytometer (Becton Dickinson, San 
Jose, CA, USA) was used to assess the percentage 
of apoptosis cells. 

Malondialdehyde (MDA) determination

MC3T3-E1 cells were seeded in a 6-well plate, 
and treated with α-MEM (Basal), H

2O2 (100 μM), 
H

2O2 (100 μM) + THSG (20 μM), H2O2 (100 μM) 
+ THSG (50 μM), and H

2O2 (100 μM) + THSG  
(100 μM) for 4 h respectively. The MDA concen-
tration was determined using an MDA assay kit 
(Cayman, Ann Arbor, USA). 

Intracellular ROS determination

MC3T3-E1 cells were seeded in a 6-well plate, 
and treated with α-MEM (Basal), H

2O2 (100 μM), 
H

2O2 (100 μM) + THSG (20 μM), H2O2 (100 μM) 
+ THSG (50 μM), and H

2O2 (100 μM) + THSG  
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(100 μM) for 4 h respectively. Intracellular ROS were 
quantified using the ROS-sensitive dye DCFH-DA. 

Real-time PCR

Total RNA was isolated using Trizol reagent 
(Gibco, Life Technology, Carlsbad, CA, USA) ac-
cording to the manufacturer’s protocol. Reverse 
transcription reactions were performed as de-
scribed. Then, mRNA expression was evaluated in 
real time on the ABI 7500 thermal cycler platform 
(Applied Biosystems, Foster City, CA, USA), and 
relative expression levels were evaluated using 
the 2–ΔΔCt method. Primers for each gene were as 
follows: 5′-TTCCTCTGCTGCCATTAGTCAGTC-3′ and 
5′-GCTCTTCCATTTCCGAGTCACTG-3′ for Nrf2 (prod-
uct: 215 bps); 5′-ATCGTGCTCGCATGAACACT-3′ and 
5′-CCAACACTGCATTTACATGGC-3′ for HO-1 (prod-
uct: 339 bps); 5′-ACTCGGAGAACTTTCAGTACC-3′ 
and 5′-TTGGAGCAAAGTAGAGTGGT-3′ for NQO1 3 
(product: 492 bps); 5′-ATCACTGCCACCCAGAAG-3′ 
and 5′-TCCACGACGGACACATTG-3′ for GAPDH. 

Western blot analysis

Cells were lysed in ice-cold radio immunopre-
cipitation assay buffer (RIPA, Beyotime, Shanghai, 
China) with fresh 0.01% protease inhibitor cock-
tail (Sigma, Shanghai, China) after treatment. Sub-
sequently, cell lysate was centrifuged (13,000 rcf,  
10 min, 4°C), and protein concentration of super-
natant was determined using the BCA protein as-
say kit. Protein (20–30 μg) was loaded onto a 10% 
SDS-PAGE gel, and then transferred to a  PVDF 
membrane (Millipore, Shanghai, China). For immu-
nodetection, the membrane was blocked with 5% 
skim milk dissolved in phosphate-buffered saline 
with 0.05% Tween (PBST) at room temperature for 
1 h. Then, blots were probed with primary antibod-
ies against pro-caspase-3/-9, caspase-3/-9, Bcl-2, 
Bax, NF-κB, Nrf2, HO-1, NQO1 and GAPDH over-
night, washed with PBST for 5 min and repeated  

3 times. Blot membranes were incubated with 
goat anti-mouse or anti-rabbit secondary anti-
body (Beyotime, Shanghai, China). After washing 
with PBST, blots were visualized using the en-
hanced chemiluminescence method. GAPDH was 
used as the internal standard for western blotting.

Statistical analysis

Continuous data were presented as mean ± 
standard deviation (SD). Comparisons between 
groups were measured using Student’s t test. 
The difference was considered as statistically 
significant when p < 0.05 (*p < 0.05, **p < 0.01,  
***p < 0.005). Statistical analysis was performed 
using SAS statistical software (SAS Inc., NC, USA).

Results

Effects of THSG on cell viability  
of MC3T3-E1 cells

To identify the effect of THSG on proliferation 
of MC3T3-E1 cells, the MTT assay was carried out. 
As shown in Figure 1, after treatment with THSG 
(at 0, 5, 10, 20, 50, 80, and 100 μM) for 6, 12, 
24 and 48 h, THSG over the dose of 20 μM could 
obviously increase the cell viability of MC3T3-E1 
cells at 6, 12, 24 and 48 h in a dose- and time-de-
pendent manner. Based on the promotive effects 
of THSG on cell viability, concentrations of 20, 50, 
and 100 μM of THSG were determined for the fur-
ther investigations.

Effects of THSG on ALP activity, MDA, and 
ROS in H2O2-insulted MC3T3-E1 cells

Serum alkaline phosphatase (ALP) is recognized 
as one of the bone formation markers. In MC3T3-E1 
cells, ALP activity could be significantly decreased 
in H2O2 treated cells compared with the controls 
(*p < 0.05). However, THSG significantly increased 
the ALP level in a dose-dependent manner (**p < 

Figure 1. Effect of THSG on MC3T3-E1 cell viability. After treatment with various concentrations of THSG (0, 5, 
10, 20, 50, 80 and 100 μM) for 6, 12, 24 and 48 h, MC3T3-E1 cell viability was assessed using the MTT assay as 
described in Material and methods (error bar = ± SD, n = 6, *p < 0.05, **p < 0.01)
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0.05, Figure 2 A). Meanwhile, the level of MDA was 
also assessed. The results showed that the MDA 
level significantly increased after treatment with 
H

2O2 (**p < 0.05), while THSG could markedly re-
verse this elevation in a dose-dependent manner 
(**p < 0.05, Figure 2 B). These findings suggested 
that THSG might play an obviously negative role in 
the regulation of H

2O2 induced oxidative damage. 
Thus, ROS levels in MC3T3-E1 cells with different 
treatments were measured. The results showed 
that the ROS level was significantly increased 
upon H

2O2 treatment, but THSG intervention could 

markedly reduce ROS levels increased by H2O2 in 
a dose-dependent manner (Figure 3).

Effects of THSG on apoptosis  
of H2O2-insulted MC3T3-E1 cells

To further investigate the effect of THSG on 
apoptosis, H

2O2 treatments were carried out using 
MC3T3-E1 cells. Flow cytometric results showed 
that H

2O2 significantly promoted cell apoptosis, 
while THSG treatment could evidently reverse this 
elevation in a dose-dependent manner (Figure 4). 
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Figure 2. Effect of THSG on ALP and MDA in MC3T3-E1 cells. A – THSG attenuated decreased ALP activity induced 
by H2O2 treatment; B – THSG reversed the elevation of MDA induced by H2O2 treatment. In this experiment, treat-
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Meanwhile, apoptosis related protein levels were 
also detected. The western blotting results showed 
that H2O2 treatment significantly up-regulated the 
expression levels of caspase-3, caspase-9, and 
Bax, and markedly down-regulated the expression 
of Bcl-2, while THSG could obviously reverse these 
effects in a dose-dependent manner (Figure 5).

Effects of THSG on Nrf2/HO-1 and NF-κB 
signaling

To further reveal THSG involved signaling path-
ways, expression levels of Nrf2 and its down-
stream effectors were evaluated using RT-PCR 
and western blot. RT-PCR results showed that 
the expression levels of Nrf2, HO-1, and NQO1 
were significantly decreased after treatment 
with H2O2, while THSG intervention could sig-
nificantly reverse these elevations (Figure 6 A).  
Meanwhile, protein levels of Nrf2, HO-1 and NQO1 
as well as NF-κB were also measured. The western 
blotting results showed that the protein expres-
sion levels of Nrf2, HO-1, and NQO1 were signifi-
cantly lower in the H2O2 treated group than in the 
control group, while THSG significantly increased 
the expression levels of Nrf2, HO-1, and NQO1 in 
a dose-dependent manner (Figures 6 B, D). How-
ever, the expression level of NF-κB significantly 
increased in the H2O2 treated group compared to 
the negative control, and THSG could obviously 
reverse this increase, which was contrary to the 

variations of Nrf2 and its downstream target (Fig-
ure 6 C, D).

Discussion

In the present study, the bio-functional effects 
of THSG on oxidative damage were investigated 
in MC3T3-E1 cells. The results showed that THSG 
protected osteoblasts against oxidative damage 
via attenuating cell apoptosis and oxidative stress, 
thereby promoting cell viability. Further analysis 
demonstrated that the protective effect might be 
developed via regulating Nrf2 and NF-κB signaling 
pathways.

Oxidative stress acts as an important patho-
genic factor for age related bone loss by regulat-
ing osteoblast and osteocyte apoptosis, osteoblast 
numbers, etc [15–17]. Moreover, oxidative stress 
has a close relationship with the pathogenesis of 
osteoporosis [18–20]. Statistics display a  strong 
dependency between higher oxidative stress and 
lower bone mineral density in ≥ 55-year-old pa-
tients [21]. In vitro studies demonstrated that 
H2O2 can mediate osteoblastic differentiation, and 
promoted osteoblastic apoptosis. Several bone 
formation related metabolic markers such as ALP 
have been applied to investigate the effects of 
THSG on pathogenesis. [22]. In this study, THSG 
was identified to have the ability to revise the in-
crease of apoptosis and ROS and decrease of ALP 
activity induced by H2O2 treatment. Mitochondria 
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are critical for mediating the complex process of 
apoptosis. During this process, cytochrome c was 
released from mitochondria, and then interact-
ed with caspase-9, which subsequently activate 
caspase-3 [23, 24] to further develop the process 
of apoptosis. Bcl-2 family members, including an-
ti-apoptotic proteins and pro-apoptotic proteins, 
are crucial for regulating the mitochondrial death 
pathway [25, 26]. As an anti-apoptosis protein, 
Bcl-2 is located on the outer mitochondrial mem-
brane to maintain mitochondrial permeability and 
to suppress cytochrome c release. In this study, 
expression of caspase-3, caspase-9, and Bax was 
significantly increased, and Bcl-2 significantly de-
creased after H2O2 treatment compared with the 
negative control, while THSG treatment could 
markedly reverse these changes, indicating that 
THSG could protect the MC3T3-E1 cells against 
the caspase-mitochondrial death pathway in-
duced by oxidative stress.

The Nrf2 signaling pathway has been demon-
strated as the major regulator in the meditation 

of endogenous and exogenous stresses induced 
by ROS and electrophiles [11, 27]. Thus, we ex-
plored the effects of H2O2 on the protein expres-
sion of Nrf2 and its downstream genes, including 
HO1 and NQO1, by RT-PCR and western blot. The 
results showed that Nrf2, HO1 and NQO1 were 
dramatically attenuated upon H2O2 treatment, and 
significantly up-regulated after THSG treatments. 
NF-κB is a  negative regulator of Nrf2 expression 
and participates in oxidative injury induced by 
H2O2 [28, 29]. In this study, THSG was significantly 
identified to revise the decrease of Nrf2 expression 
and increase of NF-κB p65 in H2O2 treated cells, in-
dicating that THSG could resist oxidative damage 
by regulating Nrf2 and NF-κB signaling pathways.

Collectively, THSG could attenuate oxidative in-
jury induced by H2O2 in osteoblasts via NF-κB and 
Nrf2 signaling pathways. These findings might 
provide a possible protocol for treatment of osteo-
porosis, which needs an in-depth study at the mo-
lecular and cellular level to further demonstrate 
how THSG reduces oxidant generative diseases. 

Figure 5. Effect of THSG on expression of 
caspase-3/-9 and Bax/Bcl-2. Cells treated with 
control, H2O2 (100 μM), H2O2 + THSG (20 μM), H2O2 

+ THSG (50 μM), and H2O2 + THSG (100 μM). Ex-
pression levels of caspase-3/-9 and Bax/Bcl-2 were 
determined by western blot (error bar = ± SD, n = 6,  
*p < 0.05, **p < 0.01, ##p < 0.01)
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Figure 6. Effect of THSG on expression of Nrf2 and NF-κB pathway. A – mRNA expression levels of Nrf2, NQO1 and 
HO1 determined using real-time PCR. B – Protein expression of Nrf2, NQO1 and HO1 determined using western 
blotting. C – Protein expression of NF-κB determined using western blotting. D – Quantification of western blotting 
results of Nrf2, NQO1, HO1 and NF-κB. In this experiment, treatments of different groups are designed as follows: 
control, H2O2 (100 μM), H2O2 + THSG (20 μM), H2O2 + THSG (50 μM), and H2O2 + THSG (100 μM) (error bar = ± SD, 
n = 6, *p < 0.05, **p < 0.01, ##p < 0.01)
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